专题
首页  >  专题  >  媒体视点  >  名刊精选  >  《汽车与驾驶维修》

《汽车与驾驶维修》

开博时间:2016-11-21 21:26:00

创刊于1992年的《汽车与驾驶维修》杂志,是国内最早专注于中国汽车行业的专业媒体之一,也是最早服务于汽车后市场的专业期刊。

文章数
分享到:

故障排除 | 宝来纯电动车型高压蓄电池模组故障诊断

2021-03-31 20:27:00

  高压蓄电池、绝缘故障、蓄电池模组

  故障现象

  一辆2020年产一汽-大众宝来纯电动汽车(e-BORA)。该车在行驶过程中仪表板上突然显示“电力驱动系统故障,请立即停车”,用户停车后致电4S店救援。

  检查分析

  维修人员接车后,确认故障现象与用户描述一致。用故障诊断仪检测,在电池管理单元(8C)查询到2个故障码:P0E7400——混合动力/高压蓄电池内部绝缘故障;P0AA600——混合动力/高压蓄电池绝缘故障。通过一汽-大众实时监控系统(RTM)查询,该车是产生了3级绝缘报警,报警时高压系统绝缘阻值70kΩ。

  宝来纯电动车型具有绝缘电阻监测功能,高压蓄电池控制系统每30s就对车身和高压系统的绝缘情况检测一次。厂家对于绝缘给出严格的标准:电阻低于510kΩ时,组合仪表会发出警告(亮黄灯);电阻低于90kΩ时,会亮红灯,并且直流充电被禁用/阻止。

  只要绝缘电阻在这2个门槛值以下,车辆就会通过RTM系统,向一汽-大众相关部门自动发送警报信息,一汽-大众客服人员会第一时间通知车主和经销商,采取相对应级别的措施。

  本车RTM系统产生3级绝缘报警,系统监控到报警时高压系统绝缘阻值70kΩ,小于90kΩ,车辆通过继电器锁住高压电,不输出动力,用户需得到经销商外出救援。

  维修人员断开维修服务开关,连接适配器,在车上测量高压系统输出口绝缘电阻(接触器之后):高压蓄电池正极HV+对地电阻为3.07MΩ;负极HV-对地电阻为3.06MΩ;正极HV+对负极HV-电阻为3.07MΩ(图1)。

  图1 测量高压系统输出口绝缘电阻

  以上数值均大于150kΩ,正常。维修思路就此中断,只能从高压蓄电池控制单元中的故障码判断,绝缘故障很大可能出现在高压蓄电池的内部。

  由于高压蓄电池输出口和高压蓄电池模组之间,串联着高压控制继电器盒。该车型通过5个继电器,将高压蓄电池模组与外面的用电器安全隔离,并将这部分结构安装在电木材料的蓄电池壳内,故只能整体割开蓄电池盖到蓄电池继电器盒后段,直接测量模组链路的绝缘性。

  将高压蓄电池与车辆的连接断开(高、低压都断开),之后断开模组控制单元,测量继电器外端绝缘电阻:高压蓄电池正极HV+和负极HV-对地电阻均为无穷大;正极HV+对负极HV-电阻为3.07MΩ。以上数值均大于150kΩ,正常。

  测量到继电器之后模组端电压(图2):高压蓄电池正极HV+与负极HV-之间电压为352.4V;正极HV+与车身之间电压为32.7V(正常为0V左右);负极HV-与车身之间电压为-310.6V(正常为0V左右)。

  图2 继电器之后模组端电压

  该车高压蓄电池一共由16个模组串联(图3),每个模组内部共12个电芯,每2个电芯并联,6组电芯串联,每个电芯额定电压为6.67V。4号模组为HV+输出端,5号模组为HV-输出端。

  图3 高压蓄电池模组排布示意图

  判定模组端存在对车身短路点的依据如下。

  根据电压累计原理,每个电芯电压为:

  352.4V÷96=3.7V

  32.7V=3.7V×N

  N≈9

  由于第9个电芯安装位置在电压累计下降方向的下一个模组(2号模组),因此推断问题点是在3号模组出现对车身短路。

  按照上述分析拆解高压蓄电池,检查果然发现3号模组存在鼓包(图4),说明内部电芯可能存在漏液现象。而3号模组内部电芯存在对地短路点,使高压蓄电池继电器盒以后,模组链路产生绝缘故障。

  图4 3号模组存在对地短路故障

  此后高压蓄电池断开控制继电器,致使从继电器外面测量绝缘电阻显示正常,只有打开高压蓄电池壳体,从继电器后面测量才能显示出真实故障点。

  故障排除

  更换高压蓄电池壳体内的3号模组,试车故障排除。

  本文来自《汽车与驾驶维修》

©2011-2021 版权所有:中国数字科技馆
未经书面许可任何人不得复制或镜像
京ICP备11000850号 京公网安备110105007388号
信息网络传播视听节目许可证0111611号
国家科技基础条件平台