

为了让软体机器人更好地控制自己,麻省理工学院的研究人员已经开发出一种算法来帮助工程师,以收集更多关于周围环境的有用信息。
研究于2月2日发表在《IEEE机器人与自动化通讯》上,标题为“Co-Learning of Task and Sensor Placement for Soft Robotics”(软机器人任务与传感器布置的协同学习),第一作者为麻省理工学院计算机科学和人工智能实验室的Andrew Spielberg。
传统金属机器人不适合执行一些需要复杂动作的任务,但是,软体机器人虽然可以做到,却需要复杂的控制系统,首先要对其自身有充分的“感知”。对于几乎可以无限变形的软机器人来说,这是一项艰巨的任务。
过去的方法是使用外部摄像机来绘制机器人位置图,再将这些信息反馈到机器人的控制程序中。但是研究人员想制造一个不需外部力量的软体机器人。麻省理工学院研究人员开发的深度学习算法,依靠在机器人体内优化放置传感器,使其能够更好地与环境交互并完成分配的任务。
关键的问题是,机器人身上能放置的传感器数量是有限的,需要多少传感器、放在哪里能达到最优效果,这是研究的目标。

首先,研究人员将机器人的身体分成“粒子”区域,每个粒子的应变率都作为神经网络的输入值。通过一个反复的尝试和错误过程,网络“学习”最有效的动作序列来完成任务,比如抓取不同大小的物体。同时,神经网络会跟踪哪些粒子使用最频繁,并且会从后续试验的输入集中剔除使用较少的粒子。
通过优化最重要的粒子,该神经网络还会提供安放传感器的建议,以确保高效性能。例如,在一个有抓手的模拟机器人中,该算法可能建议传感器集中在手指周围,在手指周围和手指周围,精确控制与环境的交互对机器人操纵物体的能力至关重要。虽然这看起来很明显,但它的结果是,在传感器建议的位置上,该算法远远超过了人类的直觉。
最热文章

人工智能写科幻小说,和作家写科幻小说有什么不一样?

德国概念设计师Paul Siedler的场景创作,宏大气派。

《静音》是一部 Netflix 电影。尽管 Netflix 过去一年在原创电影上的表现并不如预期,但是《静音》仍让人颇为期待

最近,美国最大的经济研究机构——全国经济研究所(NBER,全美超过一半的诺奖经济学得主都曾是该机构的成员)发布了一份报告,全面分析了 1990 到 2007 年的劳动力市场情况。\n

坏机器人制片公司最新的一部电影名为《霸主》(overlord),背景设置在二战时期,很可能是一部在半遮半掩中秘密制作的科洛弗电影系列。

我们都知道,到处都在重启;我们也知道,如果有钱,啥都能重启。所以,会不会被重启算不上是个问题,只能问什么时候会被重启。自然而然地,世界各地的各种重启现象衍生出了一个有趣的猜猜游戏:哪一部老作品会是下一个接受这种待遇的?\n
京公网安备11010502039775号